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Abstract. The Bethe-ansatz equations for the anisotropic spin-S Heisenberg chain are 
analysed numerically. The position of the roots for the whole spectrum is calculated for 
the spin-1 model in a chain of width N = 4. Some states are presented which violate the 
normally accepted string hypothesis. 

According to the theory of quantum integrable systems any solution of the Yang-Baxter 
equations [ 1,2] is related to some one-dimensional spin model. One of these solutions, 
with U( 1) symmetry, corresponds to the generalisation of the anisotropic Heisenberg 
spin for arbitrary integer or half-integer spin S ( X X Z - S  model). 

The diagonalisation of the X X Z - S  model is based on the quantum inverse scattering 
method [3] which is an algebraic formulation of the original Bethe ansatz [4]. The 
eigenenergies and momenta of the eigenspectrum are given in terms of the roots {A,} 
of a system of algebraic equations, the so-called Bethe-ansatz equations ( BAE). 

From the U( 1) symmetry of the X X Z - S  model its associated Hilbert space can be 
separated into disjoint sectors labelled by the eigenvalues r = 0,1,2, .  . . of the z 
component of the total spin (U( 1) charge). The associated BAE for the sector r of the 
X X Z - S  model in a chain of N sites are 

sinh y(Aj-iS) S N - r  sinh y(hj-hk-i)  )"= n j =  1,2, .  . . S N - r  
sinh y (  Aj + i s )  k = l  sinh y(Aj-hk+i) 

k f j  

where y is the parameter of anisotropy. The energy and momentum, for a given 
distribution of the roots { A j } ,  are given by 

sin2(2sy) N S - r  1 
E =  2 s  j = 1  c C O S ( ~ S ~ ) - C O S ~ ( ~ A ~ )  

and 
N S - r  

j = 1  
P = c 2 tan-'[coth( S y )  tan Aj] (mod 27r) 
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respectively. Some properties in the infinite-size limit have been considered [5,6]. In 
this limit the solution of the BAE is based on the string hypothesis, which claims that 
the zeros corresponding to any solution of (1) cluster in a series of strings of the form 
~ 5 1  

A:* = A y  +i(n + 1 -2a) /2  a = 1,2, .  . . n (4) 

where A,” (real) and n (non-negative integer) are the centre and size of the string. 
Assuming (4) we can parametrise an arbitrary configuration of zeros, in the sector r, 
by giving the number v, of strings of size n such that 2, nv, = NS - r. However, 
deviations from the string hypothesis for excited states have been found [7,8]. In this 
letter we consider the deviations from the string picture by solving (1) numerically for 
spin S s  1 and finite chain N. 

In order to see the possible structure of zeros of the BAE it is an instructive exercise 
to solve initially these equations for small chains. In the case of S = 1 and N = 4, the 
possible configurations of zeros are shown in table 1. In figure 1 and table l ( a )  we 
introduce our notation for the distribution of the zeros. Table l ( a )  give us the exact 
location of the BAE roots for some eigenstates and exemplifies the excitations shown, 
in a schematic form in figure 1. In table l (b )  we present for all sectors a complete 
picture of zeros for all the eigenstates. We also show in table 1 their corresponding 
energies and momenta in order to give us a complete idea of the whole spectrum. We 
observe from these tables that when a root with imaginary part (*7r/2y) (roots of type 
A t  in figure 1, which are represented by the symbol * )  is added to a configuration of 
the sector r ( r  > 0) it produces a configuration of the sector r - 1. For example, the 
state with three zeros located at (0, +ia - ia) ,  in the sector r = 1, like the configuration 
1020 in table 1, goes to the state with four zeros located at ( ir /2y,  0, ib, -ib) in the 
sector r = 0, like the configuration ( l0A;2,) in table 1. Another example is the state 
with two real zeros (a, - a )  in the sector r = 2  (configuration 2,, in table l (b j )  which 
goes to the state in the sector r = 1 with zeros (i7r/2y, b, -b) (configuration 2,,A: in 
table l (b) )  ortothestate,inthesector r=O,withzeros (ar+i7r/2y, -a’-irr/2y, b‘, -br) 
(configuration AZ22,A:). Moreover our numerical solutions of the BAE, up to lattices 
of size N = 40 and for spin S = 1, 3/2 and 2, indicate that the zeros for type A: have 
the imaginary part always fixed at the value (*7r /2y ) ,  independently of the lattice size 
and the spin S. These types of zeros do not fit the string assumption (4) but can be 
included in a more general formulation of this assumption [6]. In the isotropic limit, 
y + 0, these zeros go to infinity producing a degeneracy between states of different 
sectors, because, in this limit, an infinite zero does not contribute to the energy (see 
equation (2)). 

We also verify numerically the appearance of special structures of zeros that, as 
N + CO, go towards a configuration that violates the original string assumption (4) or 
its extended version [6]. The first structure of this type occurs in the sector r = 0 of 
the spin-1 model. This structure involves four zeros and resembles a 4-string excitation 
for small N. However, as N increases, the imaginary parts of the two farthest ( Y J  
and nearest ( Y l )  zeros from the real axis tend toward (2) and (1/2), respectively, in 
contrast with the 4-string structure (4), where these values are (3/2) and (1/2), 
respectively. In order to illustrate this defective structure, and compare it with the 
normal 4-string one, we give in tables 2(a) and (b), for several values of N, the 
imaginary parts ( Y l )  and ( Y2) of the zeros for these structures. The roots shown in 
table 2 appear together with a sea of (N-4) /2  strings of size 2. We observe, however, 
that, for N 3 8, these 2-string seas, associated with tables 2(a) and (b), have a different 
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Table 1. ( a )  The complex roots of the BAE and momenta for some states, in the sector 
r = 0, 1, 2 and 3, of the spin model with coupling y = 5-1 10 and chain size N = 4. The 
symbols in the first column characterise the distribution of roots (see also figure 1). ( b )  
The distribution of zeros of the BAE, energies and momenta for the complete set of states 
for the spin-1 model with coupling y = 5-110 and chain size N =4. The symbols in the 
first column characterise the distribution of zeros (see also figure 1). The energies with 
the superscript * are doubly degenerate; the configuration of zeros corresponding to the 
other state is obtained by changing the sign of the real part of the zeros. 

( a )  

{ y,, } r P {A,} 

21/22-1/2 0 0 10.295 7747 * 0.551 2269i 
A,+ 1020 0 0 5 4  0, *0.451 93951 
A121_,1,A: 0 0 1.9722917+5i, -1.972217-5i, 10.713 8511 
1020 1 5- 0, k0.444 7932i 

AT/21l 2 5-12 0.310 2752+5i, 1.002 8587 
1-1 3 5- -1.073 1427 

r {%I E l  N P r {lJJ E I N  P 

0 21/22-1/2 -0.9864962 0 1 2-,/2A: -0.432 8636* 7712 
0 10A;2, -0.7745026 5- 1 30 -0.327 2542 0 
0 A122,Al -0.5858934 0 1 1-,/2A;1I,z -0.266 7634 0 
0 10% -0.5533813 5- 1 3112 -0.2443134* 5-12 
0 1-,/221/2AT -0.5094177* 5-12 1 2-,ATI2 -0.202 2542* 5- 

0 2-l/2A:AT2 -0.428 3813* 5-12 1 A:3i21nA&2 -0.1880810 5- 

0 3,Al -0.3033813 0 1 A121,A: -0.075 6080* 5-12 
0 A I 2 l - l / ~ l l / 2 A ~  -0.262 2929 0 1 A:5/2A;A:i2 +0.0510924 0 
0 31A: -0.251 1805* 7r/2 2 20 -0.618 1531 0 
0 4, -0.2367097 0 2 2-l/2 -0.444 1201* 5-12 
0 2-,AT,A: -0.202 2542* 5- 2 l-,l, -0.279 5084 0 
0 A131,AlA: -0.1833872 5- 2 A i l o  -0.202 2542 7r 

2 21 -0.202 2542* 5-12 
0 AI3AI1I2A;/2ll -0.0722916* 5-12 2 A:I21, -0.085 3883* 5-12 
0 AI,AI,ATA: +0.0544854 0 2 AI,A: +0.040 8989 0 
1 2n1n -0.7936816 5- 3 10 -0.226 1271 77 

1 Ai2, -0.5933460 0 3 1-1 -0.101 1271* 5-12 
1 1-1/221/2 -0.5084864* 5-12 3 A: +0.023 8728 0 

size dependence. The 2-string sea associated with table 2(a) (table 2(b)) always has 
its zeros with imaginary part having an absolute value bigger (smaller) than 1/2. 

Our numerical analysis for spin S = 3 / 2  and S = 2  also indicates another type of 
zero structure which violates the string assumption. In fact we believe that this structure 
exists for all S 2 3/2. In order to explain these structures let us restrict ourselves to 
lattice size multiples of 4. For these chains, according to the string hypothesis, the 
state with lowest energy in the sector r = 1 is formed by ( N / 2  - 2) strings, of size 2S, 
symmetrically distributed with respect to the imaginary axis, and two strings of size 
2 s  and ( 2 s  - 1) located at the imaginary axis. However, the solution of the BAE, for 
finite N, shows that the (4s - 1) pure imaginary zeros, instead of forming the strings 
of size 2 s  and 2 s  - 1, prefer to form a complex structure where the four farthest zeros, 
from the real axis, are located at the corners (AR*iA,) of a rectangle with the remaining 
zeros forming, along the imaginary axis, one string of size ( 2 s  - 2) and another of size 
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30 40 A:, A: A; 

Figure 1. Some typical configurations of the complex zeros of the BAE, for the spin-1 
model, in an N = 4  sites chain. The vertical (horizontal) axis represents the imaginary 
(real) part of the roots. The symbols B, with B = 1, 2, 3, 4 or A* denote strings of size 1, 
2, 3, 4 or an excitation with an imaginary part (*-sr/2y), respectively. The subscript k is 
the nearest integer or half-integer which better represents the real part of the zeros forming 
the excitation. The strings of size 1, 2, 3 and 4 are represented by circles (0), crosses ( X ) ,  

squares (0) and triangles (A) while the excitations of type A are represented by asterisks 
(*I. 

Table 2. The location, for several values of la t t ice ize  N,  of the zeros of the BAE which 
resemble a 4-string structure, for the spin-1 model with anisotropy y = 7r/6. The imaginary 
parts of the two nearest and farthest zeros are (* Y , )  and (i Y2) .  As N increases, the zeros 
tend toward a defective structure in ( a )  and to the string of size 4 in ( b )  (see text). The 
eigenenergies corresponding to the distribution of roots where the above structures occur 
are also shown. 

( a )  

N 

8 -0.573 8621 0.502 5052 1.577 2115 
16 -0.704 6703 0.503 4479 1.657 8458 
24 -0.729 9104 0.503 0303 1.706 1569 
32 -0.738 7478 0.502 5694 1.738 6620 
40 -0.742 8242 0.502 1985 1.762 3723 
Extr. -0.750 (1) 0.500 (1) 1.99 (1) 
Conj. -0.75 0.5 2 

_ _ _ _ ~ ~  

8 -0.419 6783 0.500 0400 1.506 5420 
16 -0.582 4816 0.500 0038 1.502 0327 
24 -0.638 7408 0.500 0017 1.500 9875 
32 -0.666 8884 0.500 0003 1.500 5840 
Extr. -0.750 (4) 0.500 00 (2) 1.4999 (8) 
Conj. -0.75 0.5 1.5 
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(2s-3) .  In figure 2(a)  we draw this complex structure of zeros for the spin-2 model. 
As N increases the real parts ( A R )  of the zeros forming the rectangle decrease while 
the imaginary parts ( A , )  tend toward i(S - 1/2). Consequently, in the N += CO limit, the 
complete structure of roots for the eigenvector is composed by ( N / 2  - 2) strings of 
size 2S, two other strings of size ( 2 s  - 2) and ( 2 s  - 3) and a pair of roots located at 
*i(S - 1/2), in contradiction to the string assumption. In table 3 we show, for S = 3/2 
and S = 2 ,  the tendency to form this defective pair of zeros by giving, for lattice size 
up to N = 40, the values of A R  and A , ,  This defective structure has been realised before 
[8,9] in the special case where y = 0. More generally, from our numerical results we 
conjecture, for S 2 3/2, that defective structures, of the kind described above, will also 
occur in other sectors r # 1 of the associated Hilbert space. More precisely they will 
appear in the configuration of zeros which corresponds to the lowest eigenenergy of 
the set of sectors r = 1 + 2Sj, where j = 0, 1,2, . . . . According to the string hypothesis 
the configuration of zeros expected for such states is formed by vZs = ( N / 2 - j  - 1) 
strings of size 2s and a single string of size (2s -  1). If j is even the same structure, 
described previously for the sector r = 1, occurs, mutatis mutandis. However, if j is 
odd, the ( 2 s -  1) zeros which would form, according to the string hypothesis, a pure 
imaginary string of size (2s- l), prefer to remain in the imaginary axis but, as N 

(a1  ( b l  

Figure 2. Some configurations of roots of the BAE, for the spin-2 model, which deviate 
from the string hypothesis (see the text). The crosses ( x )  represent the roots and the 
horizontal (vertical) axis their real (imaginary) part. Configuration ( a )  ( ( b ) )  appears in 
the distribution of roots which gives the lowest energy of sectors r = 1,9, 17, . . . ( r  = 
5, 13,21, .  . .). 

Table 3. The location, for several lattice sizes N,  of the outermost zeros of the BAE, 
( A  = A, f ih,), for some excitations which deviate from the string hypothesis. The excitations 
appearing in the sector r = 1 of the spin S = 3/2 and S = 2 model (sector r = 4 of the spin 
S = 3 / 2  model) are of the type shown in figure 2(a)  (figure 2(b)). 

S =3/2,  r =  1 S = 2 , r = 1  S = 312, r = 4 

N A R  A ,  A R  A i  A1 

8 0.1087111 0.928 5499 0.122 9136 1.471 8195 0.605 9265 
16 0.060 6575 0.973 7695 0.062 2109 1.490 7608 0.674 6341 
24 0.041 1062 0.984 9942 0.041 5598 1.494 9970 0.733 8721 
32 0.031 0002 0.989 7428 0.031 1958 1.496 7277 0.787 1811 
40 0.024 8642 0.992 3047 0.024 9678 1.497 6352 0.836 7649 
Extr. 0.000 1 (4) 1.000 0 (8) 0.000 3 ( 1 )  1.499 8 ( 1 )  1.0 (2) 
Conj. 0 1 0 1.5 1 
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increases, tend toward the structure composed by one string of size (2s-3)  and a 
defective pair of zeros located at *iAI=*i(S-l/2). In figure 2 ( b )  we draw this 
structure, in the case of S = 2  and r = 5 .  In table 3 we also show the corresponding 
location, for some lattice sizes, of the pure imaginary defective pair, in the case S = 3 / 2  
and r = 4. These defective structures will also appear in excited states of the other 
sectors. They will occur because, as already discussed, if we add to them excitations 
which have a pure imaginary part (*7r/2y) (type A; in figure l ) ,  we obtain a 
configuration of zeros which describes excited states of different sectors. 

As a last remark we mention that these defective excitations may, in principle, 
produce a different dispersion relation, in the infinite-size limit, from that calculated 
originally by Sogo [ 5 ]  based on the string hypothesis. However, after some lengthy 
calculation, in which these defective structures are included, we can show that this 
dispersion relation remains the same. 

In conclusion, the numerical analysis of the BAE for the X X Z - S  model shows that 
the normally accepted string hypothesis does not provide a very accurate description 
of the structure of roots for these equations. 

We thank N Caticha and G E Marques for reading the manuscript. 
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